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ABSTRACT

The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space
Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based
iterative repair. Using this technique, one encodes both hard rules and preference criteria into data

structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for
violated constraints. The system provides a general scheduling framework which is being tested on two
NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the
scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The
other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used
to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the
GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system
would be used for manufacturing, transportation, and military problems.

INTRODUCTION

Efficient scheduling is crucial for manufacturing companies that must balance limited production resources
against challenging order requests. Airlines and package delivery companies must schedule large fleets of
vehicles coordinating transportation goals with maintenance goals but must also be adaptable to external
forces such as weather and equipment failure. The DoD also faces daunting scheduling problems ranging
from logistics transport problems to mission planning problems.

NASA also faces complex scheduling problems including telescope observation scheduling, spacecraft crew
scheduling, and spacecraft mission planning. Our research is motivated by the Space Shuttle Ground
Processing problem. Ground processing entails the inspection, testing, and repair activities required to
prepare a Space Shuttle for launch at the Kennedy Space Center (KSC) in Florida.

This paper describes a scheduling algorithm that is being used to schedule shuttle ground processing but is
also applicable to the other scheduling problems alluded to above. First we present our definition of a
scheduling problem and then describe our scheduling method. After presenting the general approach we
describe how it is used to solve the Space Shuttle problem and then briefly describe how it can be adapted to
other real-world problems.

SCHEDULING

In this section we define the scheduling problem beginning with a simplified version and evolving to a more
realistic definition.

General Problem

Generally scheduling systems are provided a set of activities, relationships between these activities (such as
predecessor-successor requirements), resource requirements for each task (i.e., how much of what kind of
resources are necessary), and a set of deadlines or milestones. With this input, scheduling systems determine
start and end times as well as an assignment of resources to each activity such that: 1) the relationships
between tasks are preserved, 2) no resource is over-allocated (i.e., at no time does the demand for a
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resource exceed its supply), and 3) all milestones are met.

For example, consider a Space Shuttle repair scenario where each Space Shuttle Main Engine needs to be
inspected, removed, repaired, re-installed, and tested, in that order. The tasks associated with different
engines are unrelated meaning that any task in support of one engine could simultaneously occur with the
tasks in support of a different engine. Assume that each task requires 10 technicians, an engineer, and a
safety inspector. Suppose there were only 15 technicians on call for each shift. In this case, no two activities
would be able to occur in parallel because together they require 20 technlciaus and there were only 15
available. If there were more technicians the system would place tasks in parallel in order to meet the
milestone.

Consequently, a scheduler would determine activity start times that sequence the activities completely serially

because any two activities' demand exceeds the supply of technicians.
In summary, scheduling systems search through the space of possible start times and resource assignments
with the goal of f'mding an assignment that satisfies all domain constraints. These constraints include
milestones, resource capacities, and temporal relationships.

Optimizing and Satisficing

Most scheduling systems simply find an acceptable schedule and then terminate. They are not necessarily
concerned with finding the best schedule that satisfies the constraints. In many domains, there is great
variability in the quality of schedules that satisfy constraints. For example, an organization might want to
find the schedule that uses the minimal amount of overtime labor, or one that minimizes the overall flowtime
of a schedule. Unfortunately, deriving the optimal schedule is a time consuming process that require, a
great deal of combinatoric search. In most cases, near-optimal solutions are sufficient. The process of
problem-solving with the goal of t'mding near-optimal solutions is called satisficing"[Simon]. The satisficing
algorithm presented in the next section continues to search after f'mding a schedule that merely satisfies
constraints, in order to find better quality schedules according to stated optimization criteria.

State Conditions

Most scheduling systems reason about the changing availability of resources over time but few track the
changes of arbitrary conditions. State conditions are attributes of the scheduling problem that change with
time. The tasks of a scheduling problem are constrained by these conditions and occasionally the activities

change the values of the conditions. Examples include the position of switches and other mechanical parts,
the readings of sensors, and the location of objects. Schedulers that handle state conditions must provide a
language to specify the additional state constraints and to specify the effects that tasks have on state
conditions.

Examples of state conditions in the Space Shuttle scheduling problem include the position of the payload bay
doors, the status of the orbiter's hydraulics system, and whether an area adjacent to the orbiter is hazardous.
Examples of state constraints include the rule that no task may take place in a hazardous area. Additionally,
some activities require orbiter hydraulics while others require the hydraulics to be off. Likewise, certain
activities require the payload bay doors to be in one of their three main positions. Activities also change
these conditions. Some activities result in opening or closing doors and turning hydraulics on or off.
Similarly, hazardous operations cause the areas surrounding their respective work areas to be considered
hazardous thus delaying any other operations that must share those areas.

Our system supports the modeling of state conditions and provides a language for state constraints and task
state effects however, details of this language are beyond the scope of this paper. It suffices to say that the
satisficing search mechanism presented below considers state constraints and state effects as it schedules.
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Pre-elnptive _cheduli__

Pre-emption is the process of temporarily suspending activities and resuming them later. Pre-emption can be
caused for a number of reasons. In a telescope observation scheduler, the system might interrupt an activity
when a more important and rare astronomical event arises. Activities could also be suspended to allow more
contentious activities to execute in their limited windows of opportunity. These are examples of flexible
pre-emption. The Space Shuttle problem requires a more restricted type of pre-emption called fired
pre-emption.

Fixed pre-emption is the suspension and resumption of activities according to a strict calendar. In the
Shuttle domain the calendar corresponds to work shifts. Some activities can be worked all shifts, every day,
while others have certain restrictions such as no weekends, only third shift, or only first shift.

To handle this sort of pre-emption our system requires a calendar for each task that indicates how it is to be
pre-empted or split into smaller pieces. For example, suppose a task that requires 12 hours work is assigned
a first shift, no weekends calendar. If the task begins at 8:00 A.M. Monday, it will be suspended at 4:00 P.M.
that day, then resumed Tuesday morning at 8:00 A.M., and then finally completed at noon. Thus the task
spans two calendar days. Suppose however that the task began Friday. It will then terminate Monday thus
spanning four calendar days.

Pre-emption greatly complicates scheduling because of the way it interferes with resources and state
conditions. Whenever a new time is considered for a task, the task must be split according to the calendar.
However, it is sometimes inappropriate for the state and resource constraints to be valid for the entire
period of the pre-empted tasks. For example, the resource needs that correspond to human labor should not
be required during the suspended periods of the task's duration. In other words, it makes no sense for
employees to be standing around idle. In these cases, the resource and state constraints must be inherited to
the split tasks thus avoiding the idle periods. Other constraints can remain active throughout the duration of
the task. An example of these include a resource request for a heavy piece of equipment that requires
significant assembly. The equipment usually remains in the work area, unavailable to others because of the
overhead required to set it up.

Our system allows the user to designate which resource requests and which state constraints and effects are
to remain valid throughout the suspended period and which ones are valid only during active periods.

CONSTRAINT-BASED SCHEDULE REPAIR

In this section, we present the search method used by the GERRY scheduling system. The system allows the
user to specify a set of tasks, a set of state conditions, and a set of resources.

Tasks have start and end times, resource requests, resource assignments, work durations, and calendars.

Resource pools are defined by the user and have a corresponding maximum capacity. For example, in the
Space Shuttle domain there might be a pool of 20 technicians or three pools of 5 forklifts.

State conditions are also provided by the user along with the initial values for each condition. For example,
the right-hand payload bay door with an initial value of closed.

• Task Data - For each task, the following information is provided:
- work duration - amount of active work time required for the task to complete.
- calendar - the pre-emption times for the task.
- resource requests - the list of resource types and quantities necessary.
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• Resource Data - For each resource pool, the following information is provided:
- type - the name of the resource category that the pool is classified as.
- capacity - the maximum amount of the pool that can be simultaneously assigned.

• State Condition Data - For each state condition, the following information is provided:
-initial value - the value for a condition which persists until a task changes it.

For each task, the following inform;ition is determined:
• start time - the beginning of the task.
• end time - the finish of the task.

• resource assignments - the actual resources chosen.

The rules and preferences that schedules must observe are captured by constraints. Constraints are
relationships that are desired by the user and are composed of the following items:

• Arguments - the tasks, resources, or state conditions that are related to each other.
Example: a task and a resource pool are arguments to a resource capacity constraint.

• Penalty- a score of how poor the arguments are with respect to the constraint.
Example: if the resource pool argument were overallocated during the time of the task, then
the penalty of the resource capacity constraint would be high.

• Weight- a number reflecting the importance of the constraint.
Example: resource capacity constraints for scarce resources such as expensive equipment
would have higher weights.

• Repairs- suggested schedule modifications that are intended to improve the penalty.
Example: move tasks that are involved in an overallocation to a time where more of the
resource is available.

Loosely speaking, the penalty is analogous to the amount of money one would have to pay with respect to
the current assignment of times and resources. The weight of the constraint reflects its importance when
compared to other constraints. Repairs are methods for changing the schedule, either by substituting
resources, or by moving, adding, or deleting activities.

Initial

Cost

Repairs
Yes No

FinalSchedule

Yes

Fioure 1: Iterative Repair Schedulino
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Figure 1. presents our simple iterative repair algorithm. See [Zweben et. al.][Zwebenl et. al.] for details.
The system begins with an initial schedule and then initiates a repair loop. 1 If the problem posed to the
system is a rescheduling problem then the initial schedule is the schedule with changes imposed by the user.
If the system is scheduling from scratch, then all tasks are placed at their earliest possible start times while
preserving temporal constraints. This is accomplished with a well known polynomial (i.e., efficient) algorithm
[Davis, Waltz].

In the repair loop, the system calculates the cost of the solution. This calculation is simply the sum of each
constraint's penalty multiplied by its weight. If the cost is below a threshold set by the user, the search
terminates. 2 Otherwise, a cross-section of the highly penalized constraints are repaired. We often refer to
these constraints as the violated constraints because their penalties exceed a certain threshold.

In short, the system simply starts with a schedule and isolates the violated constraints. Then it moves tasks
around and substitutes resources as suggested by the repairs embodied in the violated constraints. It accepts
the new schedule if the new cost is lower than the previous cost. If the repaired schedule is worse than
previous one, it is rejected and new repairs are attempted on the previous schedule. 3 The system continues
this process until the cost of the solution is acceptable to the user, or the system is terminated by the user.
The system also terminates if a certain number of iterations have been tried.

SYSTEM FUNCTIONALITY

User Interface Overview

GERRY allows both manual and automatic scheduling thus requiring a sophisticated user interface. The
user instructs the interface to display a chart. The chart library is extensible and allows the user to define
different views of the schedule. For example, the user could ask for a time-line (i.e., Gantt Chart) and a
resource profile (i.e., a histogram of resource usage over time) to be displayed for every task. Alternatively,
the user could require a time-line and state condition profile (i.e., a histogram of state conditions over time)
for a specific set of tasks. Figure 2. is part of a Space Shuttle schedule with a time-line and resource profile.
Figure 3. shows the same schedule (with hourly units) at a coarser level of resolution. Zooming in and out
of different levels of resolution is accomplished by clicking in the upper right hand boxes of the chart. This
convention was adopted from the COMPASS scheduling system of Barry Fox at McDonnell Douglass in
Houston, Texas.

1Similar repair techniques are used in OMP [Biefeld, et. al.] and in the work on the MIN-CONFLICTS heuristic [Minton, et.al.].

2The search also terminates if the system exceeds the iteration bound imposed by the user.

-Actually the system sometimes accepts worse schedules in order to break out of situations called local minima.. In a local

minimum, any repair leads to a worse schedule, but subsequent repairs could improve the schedule so that it is eventually superior.

This technique is called simulated-annealing and was originally reported in [Kirkpatrick].
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When the chart is displayed each of the activities and histograms are monse-sensitive. One can drag a task
to a new location, modify its status as pending, active, or complete, and ask for a the list of resources that
the task uses. The status of an activity is reflected by the shading of the displayed bar. If the activity is
shaded black, it is complete. Ongoing activities are outlined in black (but not shaded). Unshaded activities
that do not have an outline are pending.

In addition to status, shading is also used to reflect the danger level of the task. If an activity is _aded with
a cross-hatch pattern then it is considered hazardous.

The interface supports many task look-up methods. For example, one can scroll to a point in a chart where
a particular task begins, one can scroll to an over-allocation, or one could simply use scroll bars.

Also included in the interface are a form editor and a temporal constraint grapher. The form editor, shown
in Figure 4., is simply a mechanism to enter new activities and constraints. The grapher, shown in Figure 5,
allows the user to inspect the complex temporal relationships between tasks. The grapher works in a
demand-driven manner instead of cluttering the display with the entire schedule's graph. One clicks on a
task and the graph expands from that point on.

Schedule Monitoring_ and Reschedulin_

While GERRY can be used as a planning tool for future schedules, its strength is in its ability to monitor
schedule execution and adapt to the schedule changes imposed by elements outside the system's control.
Users modify tasks by changing their status, dragging them around, changing their constraints, and by
adjusting task durations. Users can also add and delete tasks.

One of the most important functions of the user interface is the ability to alert the user to the ramifications
of their changes. There are three main charts used to inform the user of what they have done: 1) a
before-and-after chart, 2) a constraint violation summary chart, and 3) a constraint violation problem report.
The before-and-after chart, shown in Figure 6., reports all the tasks that have been changed by indicating
their new position and their old position. The constraint violation summary chart, shown in Figure 7, is a
list of the current constraint violations. By cricking on one of the violations in the constraint violation
summary chart, a constraint violation problem report appears that explains the conflict. For example, the
constraint violation problem report shown in Figure 8. explains why a particular resource capacity constraint
is violated. Only the tasks that request the resource during the interval of the violation are displayed and the
interval is shaded in color.

After changes are given to the system, the user can manually resolve the outstanding violations or ask the
system to use the iterative repair method. When the automated method terminates (or is interrupted) it

reports a before-and-after chart. If there are outstanding violations, then a constraint violation summary
chart is also displayed.

PROBLEM DOMAINS

Space Shuttle Ground Pr0gf_ing

In the Space Shuttle Ground Processing domain we start with schedules provided by an existing project
management tool used at the Kennedy Space Center. It uses the critical path method (CPM) to schedule
activities at the earliest possible times. These schedules are used by Flow Managers who have the
responsibility to prepare the orbiter in time for the designated launch date. The data sets start with about
300-400 activities that expand into thousands of split tasks and constraints. Our project team attends KSC
schedule meetings and updates the schedule accordingly. Currently, we are in the process of delivering new
schedules to the flow managers and beginning to use the constraint-based repair method to optimize the
schedule. Below we enumerate the constraints used for this application.
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The constraints for this application include:

1. Resource Capacity Constraints

° Argum_vat 

• Y.Loa!t 

- Start of a task
- End of a task
- Resource Pool

• R_mzmc_

- Constraint is violated when the pool is over-allocated during the task. Example: 3
tasks in parallel all need a technician but only 2 are on call.

- Strategy 1: Substitute
Assign a resource pool of the same type that is not over-allocated.

- Strategy 2: Move
Move one of the tasks contending for the resource to the next time when there is
a suflident amount of the resource.

2. State Comstmints

 .rmuntu 

Penalty:.

To decide which task to move the following heuristics are used:

-Heuristic 1: Fitness
Prefer to move tasks that use an amount of the resource that is close to the
amount over-allocated.

-Heuristic 2: Slack

Avoid mo "vingtasks that have little slack between their earliest and latest
start times. 4

-Heuristic 3: Dependents
Avoid moving tasks with temporal dependents (e.g.,
postrequisites).

-Heuristic 4: Priority
Avoid moving high priority tasks.

-Heuristic 5: In Process

Avoid moving ta.._dcsthat have begun.
-Heuristic 6: Prmimity

Avoid moving tasks that are to begin soon.

- Start of a task
- End of a task
- State Condition

- Required State

- Constraint is violated when the condition does not reflect the

required state during the task.
Example: The payload bay doors are dosed for a task that requires
them to be 160 degrees open.

4Slack time indicates the amount of time a task could slip before it affects the milestone. This measure is calculated from the

CPM algorithm mentioned earlier.
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- Strategy 1: Move
Move the task to the next time where the state condition reflects the
desired state.

3. Milestone Constraints

- End of a task
- Due Date

£tnaltr,_ - Constraint is violated when the end of the task is completed later
than the given date.

- Strategy 1: Move
Move the task back earlier, before the given time.

Currently we lack the domain knowledge that would distinguish between the importance of these constraints
so they all have the same weight. The system uses these constraints (and their corresponding repairs) to
minimize missed launch dates (via milestone constraints) and to minimize over-allocation of KSC personnel
(via resource constraints) while maintaining the correct orbiter configurations (via state constraints).

In the near future we intend to include another constraint that demonstrates the flexibility of our system.
This new constraint will inform the system to minimize labor costs by avoiding overtime labor on the
weekend.

4. Weekend Ceastrainta

Ar.gltlnglgg - Global constraint.

D,aa!t - Constraint is violated when a large number of tasks intersect the
weekend.

.g_tpa - Strategy 1: Move
Move the tasks with sufficient slack time off the weekend.

Manufacturhm Problems

In job-shops, there are resources such as machines and human operators. Similar to pre-determined launch
dates in the NASA domain, job shops have order due dates. In job shops, each machine has to be set up
correctly depending upon the task at hand. Typically jobs follow a process plan that is fairly well known in
advance. There are very similar optimization criteria in this domain as there are in the Space Shuttle
domain. In fact, the constraints described above are usually applicable. Additional constraints would also be
written that would modify the schedule to minimize the number of machine set-ups required thus minimi_in_

flow time. Additionally, constraints that minimize the amount of work-in-process inventory would be
incorporated. We claim that a knowledge engineer could easily do this wi_out writing another program but
rather simply writing new constraints.

Airline. Trucking. and Parcel Service Problems

In the transportation sector, large fleets of vehicles must be scheduled on a daily basis. These operations are
stricken with unexpected events such as unpredicted malfunctions and malevolent weather. When these
events occur, it is crucial to get back on track minlmi_in_ impact to the original schedule.
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In transportation problems there are additional decision variables that constrain the schedule which include
the start and end locations of any task and the speed that one will travel between those locations.
Constraints would be added that relate the locations, speed, and duration of the task. Additionally the

qnantity of certain resource requests must be constrained by the duration. For example, the amount of fuel
required by an aircraft is dependent upon how long the plane will travel. Constraints that serve to minimize
fuel and delays, while observing safety constraints would be added to the constraints discussed above.

Military Problems

Many military problems resemble transportation problems but with targeting and probability of success
factors added. The tasks are generally trips from one's bases to the enemy's targets (and hopefully back
home again). In addition to the transportation constraints discussed above, constraints that model the
appropriateness of various aircraft and ordnances for targets would be required.

f_a._Utiliz, eli_

Ames Research Center is also deploying GERRY to minimize power consumption of the Ames wind
tunnels. The rates that local utilities charge NASA are based upon the season, time of day, and quantity of
power used. Therefore the wind tunnel test schedule can greatly affect energy costs. Ames will use GERRY
to adjust the wind tunnel test schedule to minimize its power costs but maintaining the deadlines imposed by
those who need the tunnels. Constraints are used to penalize schedules of high cost while repairs move tasks
to lower these costs.

SUMMARY

We have developed a framework for scheduling called constraint-based iterative repair. This framework
supports complex scheduling problems where satisficing is required. GERRY, the system based upon this
framework, is operational and is being deployed at the Kennedy Space Center in Florida in support of Space
Shuttle Ground Processing. The system uses the optimization criteria encoded as constraints to find
near-optimal schedules. We claim that our approach is amenable to other problems faced within industry and
government and welcome others to apply it.
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Figure 2.
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Figure 3.
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Figure 6.
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